Macro and micro structural preservation of grey matter integrity after 24 weeks of rTMS in Alzheimer's disease patients: a pilot study

Mencarelli et al. (2024)

Gonçalo Braga, Julie Le Tallec & Matthew Morvan

Alzheimer's Disease (AD) Definition and Prevalence

Progressive neurodegenerative disorder:

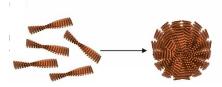
- memory loss
- cognitive decline
- behavioral changes

NX 436 - Journal Club Presentation

55 million people worldwide65 yearsRisk doubles every 5 years after 65

2023 Alzheimer's disease facts and figures

Alzheimer's Disease (AD) Definition and Prevalence



in the USA

cannot be prevented, cured or slowed

1 in 3 seniors dies with AD or another dementia

Alzheimer's Disease (AD) Pathophysiology

Clumps of **beta-amyloid protein** accumulate
between nerve cells

progressive neuron loss

brain shrinkage

(precuneus, DMN!)

Neuroinflammation and synaptic dysfunction

Tau protein forms
tangles

→ disrupt the internal
support structure of
neurons

Background

Hypothesis

Methods

Results

Discussion

Limitations

Conclusion

NX 436 - Journal Club Presentation

Alzheimer's Disease (AD) Treatment Approaches

Existing Therapies

Pharmacological

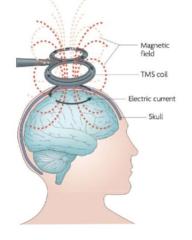
- Cholinesterase inhibitors
- NMDA receptor antagonists

Non-pharmacological

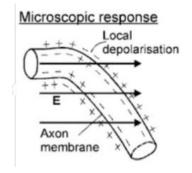
- ☐ Cognitive stimulation therapy
- Psychosocial interventions

Emerging Therapies

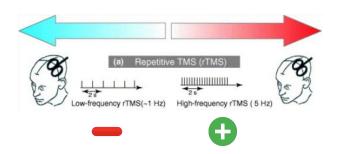
Neuromodulation Techniques


Gene therapy/Immunotherapy

- Journal Club Presentation


rTMS principles

rTMS: repetitive Transcranial Magnetic Stimulation



Ridding & Rothwell 2007 Nat Rev Neurosci

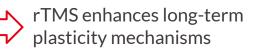
Neuromodulation with a directed magnetic field

Mechanism: local depolarization of the axonal membrane

HF: Excitatory

LF: Inhibitory

Lefaucheur et al. (2014), Rosanova et al. (2011), Quartarone et al. (2006), Russo et al. (2017)


Scientific Gap: rTMS

PC-rTMS modulates long-term memory in healthy controls and AD patients

Bonnì S et al, 2015

Animal models: rTMS increases expression of neurogenic properties

Choung JS et al, 2021

Cognitive modulation effects

Cotelli M et al, 2011

Impact on **neuroimaging**Grey matter degeneration,
network activity and integration

NX 436 - Journal Club Presentation

Hypotheses

- 1. PC-rTMS treatment **counteracts atrophy progression** in AD patients
 - macro structural level
 - micro structural level

2. PC-rTMS treatment leads to **changes in brain functional pathways**, that could influence network-to-network connectivity

NX 436 - Journal Club Presentation

Experimental Design

Mild to Moderate AD Patients (n = 16)

= Active PC-rTMS (n = 8)

Sham PC-rTMS (n = 8)

+

Week 1-2 (10 daily sessions)

Week 3-24 (22 weekly sessions)

Intensive Phase

Maintenance Phase

Structural and Functional MRI

Week 0 (W0)

Structural and Functional MRI

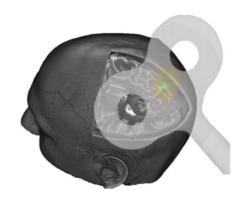
Week 24 (W24)

Mencarelli et al. (2024)

NX 436 - Journal Club Presentation

Background

Hypothesis


Methods

Results

Discussion

Limitations

rTMS Stimulation Strategy

Interval (28s)

x 40

Target: Precuneus (PC)

Frequency: 20 Hz

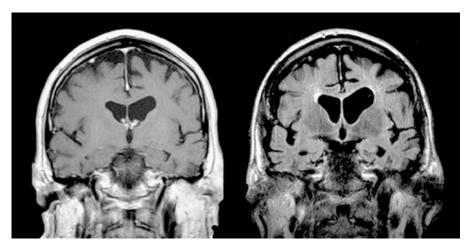
Position: Parallel to midline

pointing up

Current: Posterior-anterior

directed current

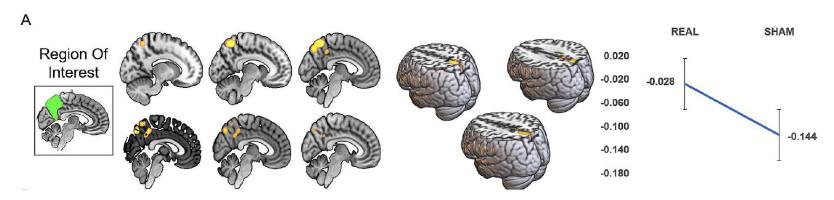
Session duration: 20 min


Mencarelli et al. (2024)

Analysis Methods (1)

Macro-structural

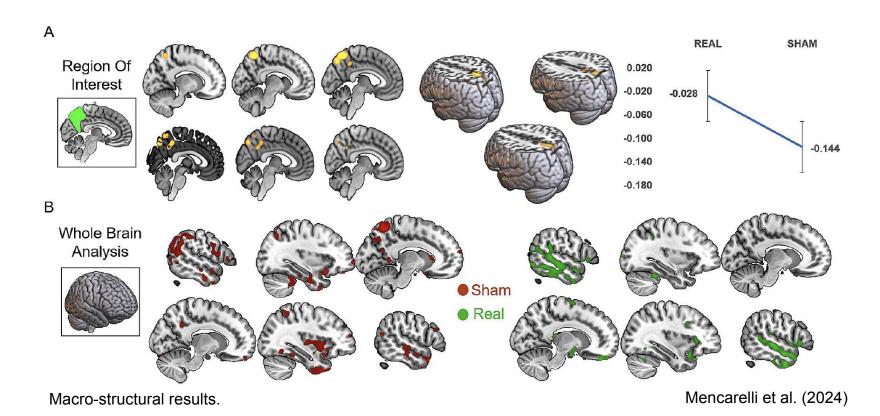
- T1-Weighted MRI
- Voxel based morphometry
- Changes in Grey Matter?


Carried out a 2-way ANOVA on volumetric changes of the precuneus.

T1 weighted image of grey matter alteration in AD Teipel et al. (2015)

Methods

Macro-Structural Results


Macro-structural results.

Precuneus grey matter decrease

significantly higher for sham (p < 0.001)

Mencarelli et al. (2024)

Macro-Structural Results

Background

Hypothesis

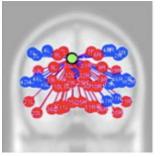
Methods

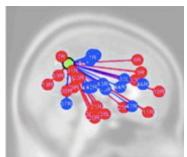
Results

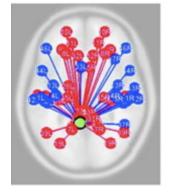
Discussion

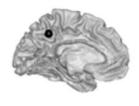
Limitations

Analysis Methods (2)

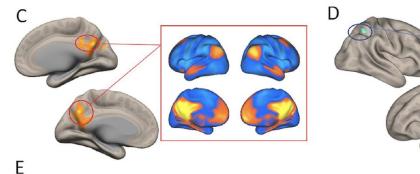

Macro-structural

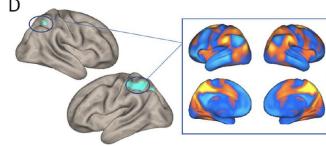

- T1-Weighted MRI
- Voxel based morphometry
- Changes in Grey Matter?


Functional


- BOLD timecourse (fMRI)
- Connectivity changes

Carried out a 2-way ANOVA on seed (precuneus) to voxel connectivity.





Seed to voxel connectivity using the precuneus Whitfield-Gabrieli et al. (2012)

Functional Connectivity Results

Functional connectivity results.

Mencarelli et al. (2024)

Increased functional connectivity with DMN

Decreased functional connectivity with DAN (superior parietal lobule)

Background

Hypothesis

Methods

Results

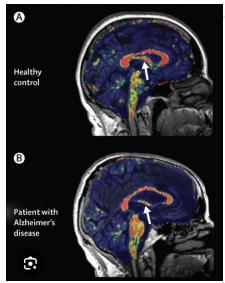
Discussion

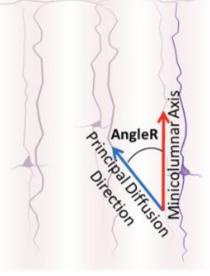
Limitations

Analysis Methods (3)

Mencarelli et al. (2024)

Macro-structural


- T1-Weighted MRI
- Voxel based morphometry
- Changes in Grey Matter?


Functional

- BOLD timecourse (fMRI)
- Connectivity changes

Micro-structural

- Diffusion tensor imaging and AngleR
- Micro-structural grey matter changes

Diffusion V1

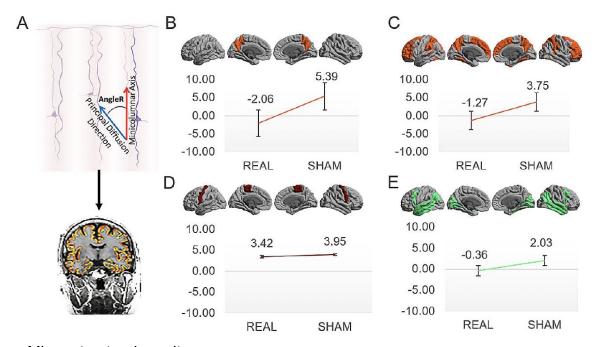
AngleR

GLMs to compare V1 and

AngleR between groups.

Background

Hypothesis


Methods

Results

Discussion

Limitations

Micro-Structural Results

Lower AngleR for PC-rTMS compare to sham

Less cortical degeneration with PC-rTMS

Mencarelli et al. (2024)

Micro-structural results.

Background

Hypothesis

Methods

Results

Discussion

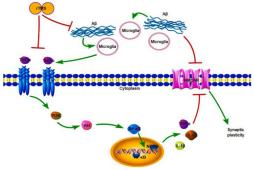
Limitations

Discussion

- rTMS may be able to slow down atrophy in AD patients
 - GM volume preservation in PC-rTMS
 - spatially specific

- Connectivity improvements to DMN, reduced connectivity to the Dorsal Attention Network
 - PC for DMN modulation

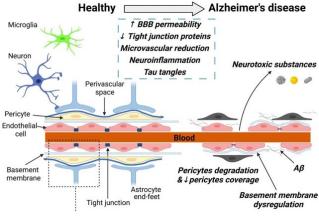

- rTMS contributes to cortical microstructural preservation
 - Microstructural metrics as potential clinical trial outcomes



Animal Models

- Choung et al. (2021) showed that 20Hz-rTMS increases the expression of growth factors (BDNF) in mice
 - Counteracts AD synaptic loss and neurodegeneration

• rTMS reduces levels of $A\beta$ and microglia activation and decreases pro-inflammatory cytokines (Li et al.)



AD treatments

• TUS therapies that modulate BBB permeability to clear A β are under development, rTMS could be capable of the same (Petrovskaya et al.)

• Other studies have shown long-lasting structural and functional reorganization following repeated NIBS, when coupled with cognitive training (Antonenko et al.)

Healthy Alzheimer's disease

Background

Hypothesis

Methods

Results

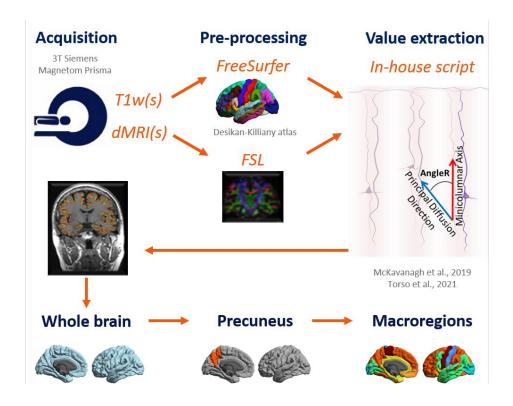
Discussion

Limitations

Limitations

- Reduced sample size (8 per group)
- Unequal gender representation (6 females, 10 males)
- Cohort characteristics lacking
 - risk factors
 - ethnicities and family history
- TMS applied by hand
- Non longitudinal design
- Could not correlate the results with cognitive outcomes or clinical effects

Conclusion


- 1st pilot study to investigate the neurobiological alterations after multiple sessions of PC-rTMS in AD patients
- rTMS comes out as a possible auxiliary AD treatment to hinder atrophy progression, maintain connectivity and so hopefully delay cognitive symptoms
- Still lacking insights on cognitive and clinical impacts as well as long term effects of PC-rTMS

Background Hypothesis Methods Results Discussion Limitations Conclusion

Supplementary Material

Background Hypothesis Methods Results Discussion Limitations Conclusion

Cortical Diffusivity Analysis

